

A joint research lab between iXblue and UJM <u>https://photonics.ixblue.com/labcom/labh6</u>

Recent progresses on fiber-based technologies for radiation-rich environments

Sylvain Girard sylvain.girard@univ-st-etienne.fr; Phone: +33 477 915 812

Outline

Introduction

- **Part 1:** Basic mechanisms of radiation effects on optical fibers
- **Part 2:** Recent Advances on radiation hardened optical fibers
- **Part 3:** Recent Advances on radiation hardened fiber-based sensors
- **Part 4:** Recent Advances on fiber-based dosimetry

Conclusions

Fiber technology is still an active research domain \rightarrow new fibers, new functionalities appear driven by Telecom and sensing markets

- Telecom-grade optical fibers : Single-mode or Multimode
- Polarization-maintaining optical fibers
- Rare-earth doped optical fibers
- Microstructured optical fibers
- Hollow core optical fibers
- Plastic optical fibers
- Few modes optical fibers
 Multicore optical fibers
 Polarising optical fibers
- IR-optical fibers (sapphire)

Amorphous silica (SiO₂)

In this talk, we focus on silica-based optical fibers for which the light guiding is ensured by Total Internal Reflection (TIR)

Optical fibers present key advantages for a variety of applications in harsh environments

Silica-based optical fibers can be designed for light transmission from the ultraviolet to the IR part of spectrum (250 – 2μ m)

Part 1: Basic Mechanisms of Radiation Effects on Optical Fibers

Review paper (2013): S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, "*Radiation Effects on Silica-based Optical Fibers: Recent Advances and Future Challenges*", IEEE TNS, vol.60 (3) 2015 - 2036, 2013

Review paper (2018): S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, et al., "*Recent advances in radiation-hardened fiber-based technologies for space applications*", Journal of Optics, vol. 20, issue 9, article number # 093001, 2018.

Review paper (2019) : S. Girard, A. Alessi, N. Richard, L. Martin-Samos, V. De Michele, L. Giacomazzi, S. Agnello, D. Francesca, A. Morana, B. Winkler, I. Reghioua, P. Paillet, M. Cannas, T. Robin, A. Boukenter, Y. Ouerdane, "Overview of radiation induced point defects in silica-based optical fibers", Reviews in Physics, vol. 4, 100032 (2019)

Three degradation mechanisms at macroscopic scale have been identified under irradiation

1. Radiation-Induced Attenuation (RIA)

2. Radiation-Induced Emission (RIE)

The relative contributions of these 3 mechanisms depend on the <u>radiation environment</u>, on the <u>targeted application</u> and <u>on the fiber properties</u>

Courtesy B. Brichard (SCK-CEN)

Radiation-induced mechanisms occurring at the microscopic scale in amorphous SiO₂ have been identified...and are a bit complex

Numerous parameters, intrinsic or extrinsic, influence the OF radiation response

These parameters affect the RIA levels & kinetics that generally define the OF vulnerability, or the OF dosimeter performances

Ex1: Fiber sensitivity strongly depends on the fiber composition: core dopants, process parameters are less impacting

No ideal composition exists, fiber relative RIA levels depend on the radiation environments, fiber profile of use...

Ex2: Fiber sensitivity strongly depends on the fiber composition: cladding dopants, stoechiometry, impurities, ...

 A slight change in composition strongly changes the nature, concentration and stability of induced defects

Ex3: Fiber vulnerability: RIA growth kinetic depends on the harsh environment: *dose, dose rate, T, irradiation duration,...*

⇒ Vulnerability strongly depends on the harsh environment associated with the application → what means Rad Hard or Rad-Sens Fibers?

Ex4: Fiber vulnerability: RIA levels and kinetics depends on the temperature of irradiation S. Girard, et al., IEEE TNS, 60(6), pp. 4305 - 4313, 2013.

Temperature parameter has been too poorly and badly studied (R+T instead R&T) → work in progress in the framework of the CERTYF project

Part 2: Recent Advances on Radiation Hardened Optical Fibers

Review paper (2013) : S. Girard, J. Kuhnhenn, A. Gusarov, B. Brichard, M. Van Uffelen, Y. Ouerdane, A. Boukenter, and C. Marcandella, "*Radiation Effects on Silica-based Optical Fibers: Recent Advances and Future Challenges*", IEEE TNS, vol.60 (3) 2015 - 2036, 2013

Review paper (2018): S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, et al., "*Recent advances in radiation-hardened fiber-based technologies for space applications*", Journal of Optics, vol. 20, issue 9, article number # 093001, 2018.

CERN LHC: identification of a radiation hardened SMF @1310nm *(steady state, 100 kGy dose level)*

CERN

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

- F-doped fiber + ?
- Very complex radiation response
- Strongly dependent on irradiation conditions

T. Wijnands, *et al.*, JLT 29, 3393-3400 (2011) T. Wijnands, *et al.*, IEEE TNS. 55, 2216-2222 (2008)

ITER diagnostics: RIA mitigation techniques can be applied to reduce the fiber sensitivity for given application and radiation environment

Membre de

For some applications, loading of the fiber with H₂, (D₂ or O₂) can reduce the RIA wavelengths: difficult to predict too!

LMJ control command: All the equipments located inside the E.H. have to be radiation-tolerant to the LMJ mixed environment

Characterize, reduce the component vulnerability (EMP and <u>radiations</u>): electronics (CCD, transistor, memory,...), optics (<u>fiber optics, glasses</u>), CMOS image sensors (ISAE-CEA-LabHC)

LMJ control command: COTS fibers have been selected and systems adapted to the transient irradiation constraints

- Control-command links mainly operate at Telecom wavelengths, before and after the LMJ shots
 - Evaluation of the vulnerability of COTS components
 - Guidelines for the LMJ design engineers

S. Girard *et al.*, IEEE TNS **52**, 1497, 2005
S. Girard *et al.*, IEEE TNS **52**, 2683, 2005
S. Girard *et al.*, IEEE TNS **53**,1756, 2006.

LMJ: Vulnerability of a large panel of optical fibers has to be characterized to the LMJ harsh environment: prototype fibers

Laser diagnostics: operate <u>during</u> the shot, mainly at 3ω .

Plasma diagnostics: operate <u>during</u> the shots, from 1ω to 3ω .

□ **Biggest challenge:** time-resolved diagnostics (time resolution < 1ns) in the ultraviolet part of the spectrum

> RIA is larger for shorter times, shorter wavelengths

No comparable studies in literature

R&D development concluded

►A co the dia

>A commercial product has the required characteristics for the diagnostics @ 3ω and is radiation-hardened

Space: Rare-earth (RE) doped fibers are very radiation sensitive and mainly explain the amplifier gain degradation under irradiation

LOW Power (Er-doped, <1W)

HIGH Power (Er/Yb, > 1W)

VHP (Er/Yb), >10W

State-of-the-art in 2012

> Origin of RIA: Their host matrix is mainly responsible of RIA at the pump and signal wavelengths that causes the amplifier degradation

Different techniques have been used to improve their responses with some limitations:

□ Nanodeposition to avoid Al in Er-doped fibers: J. Thomas et al., Opt. Express 20 2435 (2012)

> Affects the amplifier properties: gain, gain flatness...

H₂ or **D**₂ Loading: K. Zotov et al, Phot. Techn. Lett. <u>20(17)</u> 1476 (2008).

> Affects the amplifier gain, difficulty to maintain gas into the fiber

State-of-the-art in 2016

Radiation-hardened Er and Er/Yb-doped fibers exist today even for the most challenging missions

2016-2018: Building simulation tools for prediction of radiation and temperature effects on EDFA and EYDFA

Since 2018: towards very high power (20W) for free space optical communications through simulation/experiments optimization

COTS Radiation tolerant or hardened optical fibers are now available for some applications/environments

□ Radiation Hard Optical Fibers exist today for most of IR applications at MGy dose

More efforts are in progress to have a full product (coating, cable, connectors,...) qualified for harsh environments

CHALLENGES:

- ✓ Fibers for UV-visible operation for fusion/ fission
- ✓ New fiber generations (PCF, HACC, metal-coated,...)
- $\checkmark\,$ Fiber amplifiers and fiber-based lasers

Today, functionalization of OF is targeted in order that in addition to data transfer, fibers can be used to monitor environmental parameters

Part 3: Recent Advances on radiation hardened fiber-based sensors

Review paper (2017): Delepine-Lesoille, S.; S. Girard.; Landolt, M.; Bertrand, J.; Planes, I.; Boukenter, A.; Marin, E.; Humbert, G.; Leparmentier, S.; Auguste, J.-L.; Ouerdane, Y. *"France's State of the Art Distributed Optical Fibre Sensors Qualified for the Monitoring of the French Underground Repository for High Level and Intermediate Level Long Lived Radioactive Wastes"*. Sensors 2017, 17, 1377.

Review paper (2018): S. Girard, A. Morana, A. Ladaci, T. Robin, L. Mescia, et al., "*Recent advances in radiation-hardened fiber-based technologies for space applications*", Journal of Optics, vol. 20, issue 9, article number # 093001, 2018.

The vulnerability and hardening studies of OFS technologies is under progress

• Fiber Bragg Gratings (strain, temperature,)

DISCRETE SENSING (temperature, strain)

- Raman (T)
- Brillouin (T, strain,...)
- Rayleigh (T, strain, ...)

DISTRIBUTED SENSING (temperature, strain, liquid level, pressure,..)

- Dosimetry
 - RIA (active, distributed)
 - TL (passive)
 - RIL, OSL (active punctual)

PUNCTUAL, ONLINE, OFFLINE SENSING

FBG Temperature & Strain Sensing in Nuclear Industry

Advantages:

- Small size (Ø~100µm), Light weight
- Resistance to electromagnetic interference
- No need of electrical power at the sensing point
- Quick response (<1s), Multiplexing

Radiation effects on FBG properties

A. Gusarov et al., IEEE TNS, 60, 2037(2013)

- Degradation of OF -> RIA
- Influence on the FBG properties:
 - Amplitude: possible FBG erasing under irradiation → loss of OFSfunctionality
 - Bragg Wavelength Shift: error on T measurements
 - ➔ OFS performance degradation

What is the best FBG technology for MGy dose levels (nuclear industry)?

A. Morana et al., Opt Express, 23(7), 8663 (2015)

Parameters impacting the FBG response

We identified a procedure to develop RH FBGs for high T operation (up to 350°C)

RH-FBGs are made with *fs* lasers following the patented procedure into RH-OF

These RH FBGs also present the best response to high-T (300°C) and high fast neutron fluence up to 3×10¹⁹n/cm² (collaboration with CEA DEN/DRT)

Development of hard optical fiber Bragg grating sensors (2015 -2017)

The vulnerability and hardening studies of OFS technologies is under progress

• Fiber Bragg Gratings (strain, temperature,)

DISCRETE SENSING (temperature, strain)

- Raman (T)
- Brillouin (T, strain,...)
- Rayleigh (T, strain, ...)

DISTRIBUTED SENSING (temperature, strain, liquid level, pressure,..)

- Dosimetry
 - RIA (active, distributed)
 - TL (passive)
 - RIL, OSL (active punctual)

PUNCTUAL, ONLINE, OFFLINE SENSING

Distributed sensing based on backscattered light into OFs

ANDRA needs for radioactive waste storage

• Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes.

Review: S. Delepine-Lesoille, et al. Sensors 2017, 17, 1377.

Investigations of <u>Gamma radiation and hydrogen release</u> effects on Raman and Brillouin sensors to provide T, strain discrimination using a 2 fiber cable

Brillouin-based distributed temperature measurements is possible at MGy dose levels

- Radiations affect Brillouin sensors by different ways:
 - **RIA** limits the possible distance range
 - Radiation shifts the BFS → direct error on the T or strain measurement

By using best optical fibers, it is possible to limit the error below 1-2°C at MGy dose over hundredths of meters

Review: S. Delepine-Lesoille, et al. Sensors 2017, 17, 1377.

Raman-based distributed temperature (RDTS) measurements are not possible with single-ended (SE) commercial sensors C. Cangialosi, PhD Thesis, 2016

- Radiations affect Raman sensors by different ways:
 - RIA limits the possible distance range (x2 in the case of double-ended)
 - Radiation can affect the S/AS ratio → direct error on the T measurement due to ∆RIA

Hardening is not possible by components → the architecture of the sensors must be adapted

Raman-based distributed temperature (RDTS) measurements are possible with double-ended (DE) commercial sensors

I. Toccafondo, PhD thesis, 2015

I. Toccafondo, IEEE Photonics Technology Letters, 27 (20) 2182-2185, 2015

A Hardening-by-System approach allows us to perform Raman measurements at high doses

Di Francesca et al., IEEE TNS, accepted, 2016.

Т

This new SE-RDTS architecture limits both RIA and Δ RIA issues

Rayleigh-based OFS: Fukushima-Daichii accident: a break point in the nuclear safety rules

NEED: Development of a distributed **TEMPERATURE** and **WATER LEVEL** sensor for **STORAGE FUEL POOLS**

	Operating Conditions
Temperature	10 - 60 °C
Humidity	0 - 95%
Pression	86 -106 kPa
Radiation	1 MGy in 40
	years

CHALLENGE: Ability to withstand to ACCIDENTAL CONDITIONS

OFDR reflectometry is a very promising technique with a high spatial resolution (100µm over 70m for LUNA OBR4600)

Limited knowledge about radiation effects on this technology (*Alexey Faustov, PhD* <100kGy TID)</p>

Rayleigh scattering is not affected by irradiation, at least up to 10MGy

Only RIA limits the fiber sensing range

Very recent results demonstrated the potential of this technique for monitoring T, strain in nuclear facilities

S. Rizzolo, et al., Optics Express, vol.23 (15), 18998 , 2015. S. Rizzolo, et al., Optics Letters, 2015 ; S. Rizzolo et al., IEEE TNS, 2015. AREVA – LabHC, 2015 patents

Water level is well detected with a F-doped OF with polyimide coating

S. Rizzolo, et al., Nature Scientific Reports 7, Article number: 8766, 2017.

Part 4: Recent Advances on fiber-based dosimetry

RIA based dosimeters RIL based dosimeters TL based dosimetry (no time!)

Part 4: Recent Advances on fiber-based dosimetry 1. RIA based dosimetry

Different technologies of fiber-based dosimeters

Based on radiation-induced attenuation (RIA)

- ✓ Active or passive dosimetry is possible
- ✓ Point or distributed dosimetry is possible
- ✓ Discriminative dosimetry should be possible

Based on radiation-induced luminescence (RIL) and optically-stimulated luminescence (OSL)

- ✓ Active (RIL) or passive (OSL) dosimetry is possible
- ✓ Point dosimetry, distributed dosimetry should be possible
- $\checkmark~$ Discriminative dosimetry should be possible

Dosimetry based on **Thermoluminescence (TL)**

- ✓ Passive dosimetry, point dosimetry- ONLY
- \checkmark Discriminative dosimetry should be possible

What defines a highly performant RIA-based dosimeter? (1/2)

A radiation sensitive optical fibers with good sensing characteristics

- Radiation sensitivity (expressed in dB km⁻¹ Gy⁻¹)
- ✓ "Linear" RIA increase with dose
- ✓ Dose rate independence
- ✓ Temperature independence
- ✓ Absence of recovery (possibility to reset)
- Compatibility with interrogation tools (source & detectors)

What defines a highly performant RIA-based dosimeter? (2/2)

Dosimeter Performances Criteria

- Spatial resolution: point sensor or distributed sensor (cm to m resolution)
- Sensing distance (point sensor to km range)
- Detection threshold (min dose)
- Operating dose range (min max dose)

Depending on the interrogator architecture, various sensing configurations are possible

Which optical fiber for RIA-based dosimetry?

□ Radiation sensitive optical fibers are identified such as the P-doped fibers

- ✓ 4 dB km⁻¹ Gy⁻¹@1550nm (Third Telecom windows), Compatibility with interrogation tools (source & detectors)
- ✓ "Linear" RIA increase with dose (up to 500Gy); dose rate independence, Temperature independence
- ✓ Absence of recovery (possibility to reset)

Towards the on-site application: dose mapping at the PSB during 2017

→ The Distributed Optical Fiber
Radiation Sensor (DOFRS) is currently
deployed within all CERN accelerators
and parts of the LHC by the R2E group

D. Di Francesca et al., IEEE TNS 65 (2018) 1639 / G. Li Vecchi, IPAC 2018

Part 4: Recent Advances on fiber-based dosimetry 2. RIL based dosimetry

Membre de UNIVERSITE DE LYON

Identification of optical fibers exhibiting **RadioLuminescence (RL)** during irradiation or **Optically Stimulated Luminescence (OSL)** post-irradiation

Ω Scintillating optical fibers (Φ few mm)

- * High QE, RIL
- * Low TID resistance

New sol-gel materials

* Cu-doped, Ce-doped, CuCe-doped

* Gd-doped

□ New optical fibers

* N-doped

Focus on the potential of a small size (Φ 250µm, 50µm core) radiation-hard (RIA) multimode fiber \rightarrow NITROGEN-DOPED / HIGHLY-SPATIALLY RESOLVED DOSIMETRY

Tested Optical Fiber: Under X-rays (50 Gy/s), the fiber presents a strong Radioluminescence (RL) peaking around 625nm

At **HIGH** Dose rate/TID \rightarrow Short lengths of fibers have to be used to reduce RIA issues. At **LOW** Dose rate/TID \rightarrow Fiber length can be optimized to increase the RL level

Tested Optical Fiber: RL of the N-doper fiber linearly depends on the dose rate at least from 1mGy/s (100mrad/s) to 50 Gy/s (5krad/s)

In absence of Cerenkov, RL measurements provide the time evolution (with millisecond resolution) of dose rate and then of the dose (if the irradiation duration is known)

Tested Optical Fiber: the N-doped fiber presents an OSL signal under 1064nm excitation

By integrating the OSL signal after irradiation, its dose dependence of the OSL can be reconstructed and the fiber being calibrated if the OSL is dose rate independent

Tested Optical Fiber: the OSL signal under 1064nm excitation can be used to monitor the TID after the end of the irradiation

OSL appears as dose rate independent
 * 1 – 50 Gy/s dose rate

OSL monotonically grows with dose

* 1 – 10kGy dose range

In presence of Cerenkov, RL measurements provide the time evolutions (with millisecond resolution) of dose rate and a precise measure of the dose can be achieved by OSL measurements

Proton tests: Potential of the N-doped fiber for proton-therapy beam monitoring is investigated in collaboration with TRIUMF

Some of the investigated fibers (N-doped; Gd sol-gel doped) present better dosimetry characteristics than COTS scintillating fibers

S. Girard et al., IEEE TNS**66** 306 (2019) C. Hoehr et al., Nature Scientific Reports vol.9, 16376 (2019)

Conclusions

Optical fibers and fiber sensors are quickly integrated in facilities encountering radiations for data transfer and sensing

- Future challenges concern the functionalization of these fibers to monitor parameters such as temperature (eg. fire detection), strain, pressure, liquid level, vibrations, radiations....
- Overcoming these future challenges will be possible through a coupled simulation/experiments approach to identify & predict the basic mechanisms describing the radiation effects on dielectrics
- The fundamental knowledge can bring new insights about the nature of point defects and how to control them to tune the fiber response for new applications in harsh environments

Acknowledgements

Thanks to our partners !

MOPERE team June 2018

LabH6 meeting, Lannion, Dec. 2018

Thanks for your attention

